Hybrid partitioned frequency/time domain adaptive filtering algorithm for shaker control

نویسندگان

  • Martino O. Ajangnay
  • Matthew W. Dunnigan
  • Barry W. Williams
چکیده

A Hybrid Partitioned Frequency/Time domain adaptive filtering algorithm for vibration shock control is proposed. Due to the complexity of the electrodynamic shaker transfer function, the FIR based model of this transfer function requires thousands of filter weights. The Hybrid Partitioned Frequency/Time domain approach for computing the shaker model and inverse controller model is proposed, such that when this controller is cascaded with the shaker/specimen system, the output of the controlled system tracks the reference signal. The control system algorithm uses both frequency domain and time domain adaptive filtering methods. The model of the shaker system was computed using the partitioned block frequency domain adaptive FIR algorithm where the weights are partitioned in a non-overlapped fashion. The control algorithm is designed to implement the filtered-x algorithm in the time domain. The simulation and practical results indicate the effectiveness of this combined time and frequency algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering

Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...

متن کامل

Channel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain

Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...

متن کامل

Connecting Partitioned Frequency-Domain Filters in Parallel or in Cascade

The efficient implementation of connected filters is an important issue in signal processing. A typical example is the cascade of two filters, e.g., an adaptive filter with a time-invariant prefilter. The filtering and adaptation is carried out very efficiently in the frequency domain whenever filters with many coefficients are required. This is implemented as a block algorithm by using overlap...

متن کامل

Channel Effect Compensation in OFDM System under Short CP Length Using Adaptive Filter in Wavelet Transform Domain

Channel estimation in communication systems is one of the most important issues that can reduce the error rate of sending and receiving information as much as possible. In this regard, estimation of OFDM-based wireless channels using known sub-carriers as pilot is of particular importance in frequency domain. In this paper, channel estimation under short cyclic prefix (CP) in OFDM system is con...

متن کامل

Optimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion

Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004